Journal articles

Under review
[1]
S. A. Hosseini, P. Boivin, D. Thevenin, and I. Karlin. “Lattice Boltzmann methods for combustion applications”. In: Progress in Energy and Combustion Science (2023), (under review).
[2]
S. A. Hosseini and I. Karlin. “Asymptotic freedom in the lattice Boltzmann theory”. In: Physical Review Letters (2023), (under review).
[3] F. Huang,
S. A. Hosseini, G. Janiga, and D. Thevenin. “Comparative study of flow fluctuations in ruptured and unruptured intracranial aneurysms: A lattice Boltzmann study”. In: Physics of Fluids (2023), (under review).
[4] Y. Ji,
S. A. Hosseini, B. Dorschner, K. H. Luo, and I. V. Karlin. “Eulerian discrete kinetic framework in co-moving reference frame for high-speed flows”. In: Journal of Fluid Mechanics (2023), (under review).
[5] Y. Liu,
S. A. Hosseini, B. Dorschner, C. Liu, Z. Wang, and I. V. Karlin. “Transition time of a bouncing drop”. In: Physical Review Letters (2023), (under review).
[6] Q. Tan,
S. A. Hosseini, A. Seidel-Morgenstern, D. Thevenin, and J. Lorenz. “Thermal effects connected to crystallization dynamics: a lattice Boltzmann study”. In: International Journal of Multliphase flows (2023), (under review).

2023
[1]
S. A. Hosseini, M. Atif, S. Ansumali, and I. Karlin. “Entropic lattice Boltzmann methods: A review”. In: Computers & Fluids (2023), p. 105884.
[2]
S. A. Hosseini and I. V. Karlin. “Entropic equilibrium for the lattice Boltzmann method: Hydrodynamics and numerical properties”. In: Physical Review E (2023), (accepted).
[3]
S. A. Hosseini and I. V. Karlin. “Lattice Boltzmann method for non- ideal fluids: Fundamentals and application”. In: Physics Reports (2023), (accepted).
[4]
S. A. Hosseini and D. Thevenin. “Towards pore-scale simulation of combustion in porous media using a low-Mach hybrid lattice Boltzmann/finite difference solver”. In: Physics of Fluids (2023), (accepted).
[5] R. Namdar, M. Khodsiani, H. Safari, T. Neeraj,
S. A. Hosseini, F. Beyrau, B. Fond, D. Thevenin, and F. Varnik. “Numerical study of convective heat transfer in static arrangements of particles with arbitrary shapes: A monolithic hybrid lattice Boltzmann-finite difference-phase field solver”. In: Particuology (2023).
[6] T. Neeraj, C. Velten, G. Janiga, K. Zahringer, R. Namdar, F. Varnik, D. Thevenin, and
S. A. Hosseini. “Modeling gas flows in packed beds with the lattice Boltzmann method: validation against experiments”. In: Flow, Turbulence and Combustion (2023), (accepted).


2022
[1]
S. A. Hosseini, N. Darabiha, and D. Thevenin. “Low Mach number lattice Boltzmann model for turbulent combustion: flow in confined geometries”. In: Proceedings of the Combustion Institute (2022), (In press).
[2]
S. A. Hosseini, F. Huang, and D. Th ́evenin. “Lattice Boltzmann model for simulation of flow in intracranial aneurysms considering non-Newtonian effects”. In: Physics of Fluids 34.7 (2022), p. 073105.
[3]
S. A. Hosseini, B. Dorschner, and I. V. Karlin. “Entropic Multi-Relaxation-Time Lattice Boltzmann Model for Large Density Ratio Two-Phase Flows”. In: Communications in Computational Physics 33.1 (2023), pp. 39–56.
[4] Q. Tan,
S. A. Hosseini, A. Seidel-Morgenstern, D. Thevenin, and H. Lorenz. “Mandelic Acid Single-Crystal Growth: Experiments VS Numerical Simulations”. In: Communications in Computational Physics 33.1 (2023), pp. 77–100.

2021
[1]
S. A. Hosseini, P. Berg, F. Huang, C. Roloff, G. Janiga, and D. Thevenin. “Central moments multiple relaxation time LBM for hemodynamic simulations in intracranial aneurysms: An in-vitro validation study using PIV and PC-MRI”. In: Computers in Biology and Medicine 131 (2021), p. 104251.
[2]
S. A. Hosseini, H. Safari, and D. Thevenin. “Lattice Boltzmann solver for multiphase flows: Application to high weber and Reynolds numbers”. In: Entropy 23.2 (2021), p. 166.
[3] M. H. Saadat,
S. A. Hosseini, B. Dorschner, and I. V. Karlin. “Extended lattice Boltzmann model for gas dynamics”. In: Physics of Fluids 33.4 (2021), p. 046104.
[4]
S. A. Hosseini, B. Dorschner, and I. V. Karlin. “Towards a consistent lattice Boltzmann model for two-phase fluids”. In: Journal of Fluid Mechanics 953 (2022), A4.
[5] F. Huang, R. No ̈el, P. Berg, and
S. A. Hosseini. “Simulation of the FDA nozzle benchmark: A lattice Boltzmann study”. In: Computer Methods and Programs in Biomedicine 221 (2022), p. 106863.
[6] Q. Tan,
S. A. Hosseini, A. Seidel-Morgenstern, D. Thevenin, and H. Lorenz. “Modeling ice crystal growth using the lattice Boltzmann method”. In: Physics of Fluids 34.1 (2022), p. 013311.


2020
[1]
S. A. Hosseini, A. Abdelsamie, N. Darabiha, and D. Thevenin. “Low-Mach hybrid lattice Boltzmann-finite difference solver for combustion in complex flows”. In: Physics of Fluids 32.7 (2020), p. 077105.
[2]
S. A. Hosseini, N. Darabiha, and D. Thevenin. “Compressibility in lattice Boltzmann on standard stencils: effects of deviation from reference temperature”. In: Philosophical Transactions of the Royal Society A 378.2175 (2020), p. 20190399.
[3]
S. A. Hosseini, A. Eshghinejadfard, N. Darabiha, and D. Thevenin. “Weakly compressible lattice Boltzmann simulations of reacting flows with detailed thermo-chemical models”. In: Computers & Mathematics with Applications 79.1 (2020), pp. 141–158.


2019
[1] A. Eshghinejadfard,
S. A. Hosseini, and D. Thevenin. “Effect of particle density in turbulent channel flows with resolved oblate spheroids”. In: Computers & Fluids 184 (2019), pp. 29–39.
[2]
S. A. Hosseini, C. Coreixas, N. Darabiha, and D. Thevenin. “Extensive analysis of the lattice Boltzmann method on shifted stencils”. In: Physical Review E 100.6 (2019), p. 063301.
[3]
S. A. Hosseini, C. Coreixas, N. Darabiha, and D. Thevenin. “Stability of the lattice kinetic scheme and choice of the free relaxation parameter”. In: Physical Review E 99.6 (2019), p. 063305.
[4]
S. A. Hosseini, N. Darabiha, and D. Thevenin. “Lattice Boltzmann advection-diffusion model for conjugate heat transfer in heterogeneous media”. In: International Journal of Heat and Mass Transfer 132 (2019), pp. 906–919.
[5]
S. A. Hosseini, N. Darabiha, and D. Th ́evenin. “Theoretical and numerical analysis of the lattice kinetic scheme for complex-flow simulations”. In: Physical Review E 99.2 (2019), p. 023305.
[6]
S. A. Hosseini, H. Safari, N. Darabiha, D. Thevenin, and M. Krafczyk. “Hybrid lattice Boltzmann-finite difference model for low Mach number combustion simulation”. In: Combustion and Flame 209 (2019), pp. 394–404.


-2018
[1] A. Eshghinejadfard, A. Abdelsamie,
S. A. Hosseini, and D. Thevenin. “Immersed boundary lattice Boltzmann simulation of turbulent channel flows in the presence of spherical particles”. In: International Journal of Multiphase Flow 96 (2017), pp. 161–172.
[2] A. Eshghinejadfard,
S. A. Hosseini, and D. Thevenin. “Fully-resolved prolate spheroids in turbulent channel flows: a lattice Boltzmann study”. In: AIP Advances 7.9 (2017), p. 095007.
[3]
S. A. Hosseini, N. Darabiha, D. Thevenin, and A. Eshghinejadfard. “Stability limits of the single relaxation-time advection–diffusion lattice Boltzmann scheme”. In: International Journal of Modern Physics C 28.12 (2017), p. 1750141.
[4]
S. A. Hosseini, N. Darabiha, and D. Thevenin. “Mass-conserving advection–diffusion Lattice Boltzmann model for multi-species reacting flows”. In: Physica A: Statistical Mechanics and its Applications 499 (2018), pp. 40–57.